Longitudinal Phase Space Distortion in FFAGs

J. Scott Berg Muon Collaboration Friday Meeting 18 March 2005

FFAG Longitudinal Equations of Motion

Time of flight is approximately a parabolic function of energy

$$\frac{d\tau}{ds} = \Delta T \left(\frac{2E - E_i - E_f}{\Delta E} \right)^2 - T_0,$$

Energy gain from RF

$$\frac{dE}{ds} = V\cos(\omega\tau),$$

Time-of-Flight vs. Energy

Normalized Variables

Change of variables

$$x = \omega \tau$$

$$p = \frac{E - E_i}{\Delta E} \qquad u = \frac{s}{\omega \Delta T}$$

$$u = \frac{s}{\omega \Delta T}$$

- Accelerate from p = 0 to p = 1
- New equations of motion

$$\frac{dx}{du} = (2p-1)^2 - b \qquad \frac{dp}{du} = a\cos x \qquad a = \frac{V}{\omega\Delta T\Delta E} \qquad b = \frac{T_0}{\Delta T}$$

Hamiltonian

$$\frac{1}{6}(2p-1)^3 - \frac{b}{2}(2p-1) - a\sin x$$

Parameter Regimes

- To pass particles through from p=0 to p=1, require $a>b^{3/2}/3$
- For central particle to cross p=0 and p=1, require a>|1/6-b/2|
- Small a, smaller phase space region for bunch
- ullet Requirements together lead to minimum a of 1/24
 - Smaller a gives more emittance growth
- Based on design requirements (emittance, allowed emittance growth, etc.), determine a and b

Particles Passing Through

Particles Barely Pass

Particles Can't Pass

Central Particle Doesn't Make It

Central Particle Just Makes It

Lower a

Allowed Region of Parameter Space

Symplectic Maps

 A general symplectic map can be described by a "Dragt-Finn Factorization":

$$e^{-:g_1:\dots e:f_4:}e^{:f_3:}e^{:f_2:}e^{:f_1:}$$

- ◆ I won't go into what precisely this means...
- f_n is a nth-order homogeneous polynomial in the phase space variables
- \bullet f_1 describes the final reference point, g_1 the initial reference point
- f_2 is the linear part of the map
- The rest are nonlinear

One-Dimensional Example

• Write f_n as

$$f_n = \sum_{k=0}^n f_{nk} x^{n-k} p^k$$

Calculate the emittance using the second-order covariance matrix

$$\sqrt{\det\{\langle \boldsymbol{z}\boldsymbol{z}^T\rangle - \langle \boldsymbol{z}\rangle\langle \boldsymbol{z}\rangle^T\}}$$

• To lowest order, the emittance growth is $(f_2 = 0)$

$$\frac{3}{4}\langle J^2\rangle(9f_{30}^2 - 6f_{30}f_{32} + 5f_{32}^2 + 9f_{33}^2 - 6f_{33}f_{31} + 5f_{31}^2) - \frac{1}{2}\langle J\rangle^2[(3f_{30} + f_{32})^2 + (3f_{33} + f_{31})^2]$$

- $\langle J \rangle = \epsilon$ is the emittance; $\langle J^2 \rangle > \langle J \rangle^2$
- This can be negative if $\langle J^2 \rangle < (4/3) \langle J \rangle^2$ (equality for uniform)!

Computing Emittance Growth

- \bullet For given a and b, compute f_3
- Transform f_3 with a linear transform corresponding to the orientation of the incoming ellipse
 - Minimize emittance growth over that transform (two free parameters)
- Minimize the result with respect to b
- Have emittance growth as a function of a

Emittance Growth Analysis

- For small a, $\Delta \epsilon/(\epsilon^2) \propto (a-1/24)^{-2}$
- Emittance growth is smaller for smaller $\langle J^2 \rangle / \epsilon^2$
- To use:
 - Compute emittance in normalized coordinates
 - Choose acceptable emittance growth
 - ◆ Find a which gives that emittance growth
- Optimal b is independent of $\langle J^2 \rangle / \epsilon^2$
- For small a, optimal b is the minimum b
 - Can be negative!
- Optimal ellipse orientation is tilted, even though initial phase space trajectories are flat

Emittance Growth vs. a

Optimal b

Allowed Region of Parameter Space

Time-of-Flight vs. Energy

Emittance Growth vs. b

Optimal Orientation

After FFAG

Central Particle Just Makes It

Emittance Reduction Example

- Before, found that for some cases to lowest order, emittance went down!
- What does this mean?
- Properly choose f₃ to get "emittance reduction"
- Nearly uniform distribution, but weighted slightly to the outside.
 0.6% emittance reduction
- Distribution more heavily weighted to the outside: 6.3% emittance reduction
- Difficult to get reductions significantly larger than this: would need higher amplitude distributions, and higher order terms start to dominate

Nearly Uniform: Before

Nearly Uniform: After

Ring Distribution

Analysis

- Phase space area occupied and local density stay the same! No violation of phase space area conservation
- Distribution is getting nonlinearly shifted toward the left center.
 - Particles are getting concentrated near that point, reducing computed emittance
 - With a more uniform distribution, particles are also pushed away from that point
 - Ring-like distribution has fewer particles being pushed away

Individual Particles

Ellipse Distortion

- Potentially better criterion for FFAG performance: ellipse distortion
 - Start with an ellipse, measure the deviations from the closest ellipse at end
- As before, plot ellipse distortion vs. a
- Note different qualitative behaviors
 - Emittance growth was proportional to ϵ^2 ; action distortion is proportional to $(2J)^{3/2}$. Equivalently, radius distortion is proportional to r^2 .
 - ◆ Coefficient is proportional to $(a 1/24)^{-1}$, whereas for emittance growth it was $(a 1/24)^{-2}$

Ellipse Distortion vs. \boldsymbol{a}

Improved Computation

- Leaving out two effects
 - Amplitude-dependent shift of the ellipse center
 - Amplitude-dependent distortion of the ellipse shape
 - If we include these, then we don't care where the center of the ellipse is; we only care about the outer boundary enclosing all particles
- Including these effects, action distortion will be proportional to $(2J)^{5/2}$, or radius distortion proportional to r^4
 - ◆ This gives significantly less distortion for small radii
- Good for neutrino factory: don't care what low amplitude particles are doing
- May not be as good for collider
- Still working on the computation...

Ellipse Distortion vs. Amplitude

Conclusions

- Have two ways of computing longitudinal phase space distortion for a muon FFAG
 - Emittance growth
 - Ellipse distortion
- Can use these to choose design parameters for an FFAG
- Can include amplitude-dependent shifts in the ellipse distortion computation
 - May give better results for neutrino factory scenario
- For some distributions, nonlinearities alone can lead to reduction of emittance as computed using second order covariant matrix
- This is not a real increase in phase space density: Liouville still holds!